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What it is about
Vı́r water reservoir on 12 August 2018 (photo: CHMI Brno Regional Office)
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What it is about
Svratka River in Borovnice on 12 August 2018 (photo: CHMI Brno Regional Office)
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What it is about
Loučka River in Dolnı́ Loučky on 21 August 2018 (photo: CHMI Brno Regional Office)
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What it is about
Morava River in Strážnice on 20 August 2018 (photo: Brno Regional Office)
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Introduction

The current long-lasting drought period in Czechia dates back to
the winter 2014/2015 (see, e.g., Šercl et al., 2019).

Climate factors, such as lowered precipitation, higher
temperature and consequent small amounts of snow (in the
mountains), are thought to be the main reason for it.

It is also hypothesized that there are spatial and temporal
changes in precipitation patterns in Central Europe where
Czechia is located.

This situation has laid the basis for the question whether some
changes are also reflected in the indices related to
hydrological/streamflow drought.

7/34 Ondrej Ledvinka & Pavel Coufal Streamflow drought in the Morava River basin



Introduction

The current long-lasting drought period in Czechia dates back to
the winter 2014/2015 (see, e.g., Šercl et al., 2019).
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Climate factors, such as lowered precipitation, higher
temperature and consequent small amounts of snow (in the
mountains), are thought to be the main reason for it.

It is also hypothesized that there are spatial and temporal
changes in precipitation patterns in Central Europe where
Czechia is located.

This situation has laid the basis for the question whether some
changes are also reflected in the indices related to
hydrological/streamflow drought.

7/34 Ondrej Ledvinka & Pavel Coufal Streamflow drought in the Morava River basin



Introduction

The current long-lasting drought period in Czechia dates back to
the winter 2014/2015 (see, e.g., Šercl et al., 2019).
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Introduction

The objective of this study was, therefore, to take the long time
series of discharge, possibly not much influenced by human
activities (see Šercl et al., 2016), and to perform a trend analysis
of the derived series of selected indices quantifying streamflow
drought.

The focus was on the basin of the Morava River, an important
left-hand tributary of the Danube.

8/34 Ondrej Ledvinka & Pavel Coufal Streamflow drought in the Morava River basin



Introduction

The objective of this study was, therefore, to take the long time
series of discharge, possibly not much influenced by human
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Study area and data
Location of 46 selected water-gauging stations within the territory of Czechia and their database
numbers
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Study area and data
A closer look at the Morava River basin and the 46 investigated water-gauging stations together
with their names
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Study area and data
Mapping of missing mean daily discharge values at the 46 selected water-gauging stations,
hydrological period 1912–2018
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Study area and data
Part of the discharge series of station 429500 where missing values were imputed

Imputed mean daily discharge values at station 429500
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Study area and data
Timing of occurrences of standardized annual (either summer or winter minimum) 7-day low flows
altogether in each possible hydrological year for all 46 investigated stations
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Study area and data
Timing of occurrences of standardized annual 15-day low flows in each possible hydrological year
for all 46 investigated stations
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Study area and data
Timing of occurrences of standardized annual 30-day low flows in each possible hydrological year
for all 46 investigated stations
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Study area and data
Inspired by previous works, such as Khaliq et al. (2008); Fiala
et al. (2010); Vlnas & Fiala (2010); Khaliq & Sushama (2012);
Ledvinka (2015), we derived summer (April–November) and
winter (December–March) low-flow series. Specifically, 7-, 15-
and 30-day low flows were sought for each year of the reference
period 1981–2010 and the longest possible periods based on the
series of mean daily discharge (QD) of the Czech
Hydrometeorological Institute (CHMI).

Furthermore, deficit volumes and corresponding durations were
sought using the combination of the threshold level method
(TLM; Q95%) and the sequent peak algorithm (SPA; Tallaksen
et al., 1997; Tallaksen & van Lanen, 2004; Tokarczyk, 2013;
Baran-Gurgul, 2018). Seasonal (monthly) thresholds always
represented the reference period for comparison purposes.

Here, only summer maxima and sums of deficit volumes and
durations were analyzed in a similar way as in Hisdal et al.
(2001).
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Trend analysis
Original MK test

Let xk represent a time series (a centred time series) having an
annual time step (for k = 1, ...,K ). Then the MK test statistic SMK
is defined as follows (e.g., Hirsch et al., 1993):

SMK =
∑
∀j<`

sgn(x` − xj)

The statistic is frequently accompanied by the estimate of Sen’s
slope βS (Yue et al., 2002):

βS = med

(
x` − xj

`− j

)
, ∀j < `
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Trend analysis
Original MK test

For K > 10, an approximation of the distribution of SMK by the
standard Gaussian distribution N (0,1) is possible. Then, one
can compute the standardized MK test statistic ZMK (Hirsch
et al., 1993):

ZMK =


SMK−1√
σ2

MK

if SMK > 0

0 if SMK = 0
SMK+1√
σ2

MK

if SMK < 0

σ2
MK =

K (K − 1)(2K + 5)−
∑K

g=1 tgg(g − 1)(2g + 5)
18

The value of the statistic ZMK is then compared to the critical
values derived from the distribution N (0,1). A trend is found (or
better, the null is rejected) if |ZMK | > u1−α/2.
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Trend analysis
Accounting for long-term persistence (LTP)

First, the discrimination between long-term persistence (LTP) and
short-term persistence (STP) was made where the parameter H
(Hurst exponent) was estimated (Tyralis & Koutsoyiannis, 2011)
and its significance evaluated (Hamed, 2008):

µH = 0.5− 2.874K−0.9067

σH = 0.77654K−0.5 − 0.0062
|H| > µH + u1−α/2 · σH

If H proved to be significant, Hamed’s modification of the
Mann–Kendall (MK) test for trend, accounting for LTP, was
employed. Further explanation would be lengthy. Therefore, see
Hamed (2008) for details.
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Trend analysis
Accounting for short-term persistence (STP)

If H proved to be insignificant, the Yue–Wang (YW) modification
of the MK test was utilized that distinguishes between AR(1)
processes and white noise.

Here, σ2
MK is corrected and then substituted into the cal-

culation of the standardized test statistic ZMK (Yue & Wang, 2004):

σ̃2
MK = σ2

MK ·

[
1 + 2 ·

r̂K+1
1 − K · r̂2

1 + (K − 1) · r̂1

K · (r̂1 − 1)2

]
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Results
Trends in the series of summer maxima of deficit volume for the longest periods
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Results
Trends in the series of summer sums of drought duration for the reference period
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Results
Trends in the series of summer 7-day low flows for the longest periods
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Results
Trends in the series of summer 30-day low flows for the reference period
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Results
Trends in the series of winter 7-day low flows for the longest periods
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Results
Trends in the series of winter 30-day low flows for the reference period
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Discussion

Not many significant trends were found, and their number may
often correspond to the expected error rate (significance level).

30-year reference period is actually short for estimating H
(Montanari, 2003) and the test modification accounting for LTP
might not have been necessary.

If some, trends cluster in karst areas and the foothills of
mountain ranges.

Climate change may be reflected in the seasonal course of
hydrographs, which is likely related to earlier snowmelt or the
shift from solid precipitation to liquid precipitation, increasing
winter minima and decreasing summer minima (Jenicek et al.,
2016; Jenicek & Ledvinka, 2019).

Water managers should be aware of the changes not only above
some of the water reservoirs.
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Future

The occurrence of snow and ice phenomena should be
investigated further.

The study of probable shifts in Julian days corresponding to the
occurrence of low flows is already being in preparation.

The issue of antipersistence (i.e., H < 0.5) that has been
detected not only in the Czech hydrological series (see, e.g.,
Rivard & Vigneault, 2009) may be of great importance.

Focus should be on various time periods using also extended
series (Hamed, 2008).
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Thank you all for your attention!

Ondrej Ledvinka (ondrej.ledvinka@chmi.cz)
Pavel Coufal (pavel.coufal@chmi.cz)
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Rivard, C. & Vigneault, H. (2009). Trend detection in hydrological
series: When series are negatively correlated. Hydrological
Processes, 23(19), 2737–2743.
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Zhodnocenı́ vývoje hydrologické situace v obdobı́ 2014-2018. In
Hydrological Yearbook of the Czech Republic 2018. Praha: Czech
Hydrometeorological Institute.

Tallaksen, L. M., Madsen, H., & Clausen, B. (1997). On the definition
and modelling of streamflow drought duration and deficit volume.
Hydrological Sciences Journal, 42(1), 15–33.

Tallaksen, L. M. & van Lanen, H. A. J., Eds. (2004). Hydrological
Drought: Processes and Estimation Methods for Streamflow and
Groundwater. Number 48 in Developments in Water Science.
Amsterdam; Boston: Elsevier.

Tokarczyk, T. (2013). Classification of low flow and hydrological
drought for a river basin. Acta Geophysica, 61(2), 404–421.

33/34 Ondrej Ledvinka & Pavel Coufal Streamflow drought in the Morava River basin



References V

Tyralis, H. & Koutsoyiannis, D. (2011). Simultaneous estimation of the
parameters of the Hurst–Kolmogorov stochastic process.
Stochastic Environmental Research and Risk Assessment, 25(1),
21–33.

Vlnas, R. & Fiala, T. (2010). Spatial and temporal variability of
hydrological drought in the Czech Republic. In SGEM2010
Conference Proceedings, volume 2 (pp. 59–66). Varna, Bulgaria:
International Multidisciplinary Scientific Geoconference.

Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002). The influence
of autocorrelation on the ability to detect trend in hydrological
series. Hydrological Processes, 16(9), 1807–1829.

Yue, S. & Wang, C. (2004). The Mann-Kendall test modified by
effective sample size to detect trend in serially correlated
hydrological series. Water Resources Management, 18(3),
201–218.

34/34 Ondrej Ledvinka & Pavel Coufal Streamflow drought in the Morava River basin


	Introduction
	Study area and data
	Trend analysis
	Results
	Discussion
	Future
	Reference

